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Abstract The Lotka–Volterra equation, proposed first with two variables by A. J.
Lotka, underpins the well-known classic model for chemical oscillations. The general
solutions of the Lotka–Volterra equation, with n variables, however, remain unknown.
We describe a solvable nonlinear model and general solution, previously unstudied for
chemical oscillations, that is analogous to the Lotka–Volterra equations with n vari-
ables. This model approximates the Lotka–Volterra equations in the neighbourhood
of an equilibrium point and is solvable because it can be shown to be linearized to a set
of first-order linear differential equations. The purpose of this report is a description
of the general solution of the model.
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1 Introduction

The Lotka–Volterra equation is used in a classic well-known model to describe chemi-
cal oscillations [1]. It was initially applied with two variables to a chemically oscillating
system, and then generalized to a system with n variables. It has a number of important
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inherent nonlinear properties. Much literature has been published over the intervening
years covering aspects such as dynamical invariants [1], heteroclinic cycle [2], strange
attractors [3], analytic solutions with two variables [4,5], factorized canonical forms
[6], diffusion and stability [7–10], front and travelling waves [11,12], turbulence [13].
Because the masses of interrelated biological species are often seen in nature to oscil-
late, the Lotka–Volterra equation has also become one of the most important models
in biological ecology [7,11,14].

A class of two-variable models, with the Lotka–Volterra equations taking the form
of ordinary differential equations, includes both the predator–prey and competitive
models [1–6]. The predator–prey model oscillates whereas the competitive model
does not. Models suitable for describing chemical oscillations are thus the predator–
prey models, which have two equilibrium points: one is the trivial point (0, 0); the
other is the so-called centre, which is defined as a point that has a neighbourhood
in which any orbit returns exactly to its initial point in only one cycle around its
centre. In other words, all orbits are periodic and the system in the neighbour of this
centre circulates indefinitely. This behaviour underpins chemical oscillations. In a
similar manner, the Lotka–Volterra equations described as both a pair of first-order
differential equations and reaction–diffusion concentrations, have been investigated
intensely [7–14]. In an oscillating model of reaction–diffusion, chemical substances
react and oscillate, and then spatially diffuse along concentration gradients of the
chemical substances. Because of the nonlinearity of the Lotka–Volterra equations, no
explicit solutions are known for the Lotka–Volterra models of ordinary differential
equations with n variables, or more precisely, a general solution expressed explicitly
in terms of elementary functions of time are unknown.

We describe here a solvable nonlinear model, which has not been previously inves-
tigated for chemical oscillations, that is analogous to the Lotka–Volterra equations
with n variables. The purpose of this study is to describe the general solution of the
solvable model and moreover present a numerical example.

2 Solvable model

The solvable model investigated in this study is the following set of ordinary differential
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d X1
dt = X1

(
a11 log X1

b1
+ a12 log X2

b2
+ · · · + a1N log X N

bN

)

...
d X N

dt = X N

(
aN1 log X1

b1
+ aN2 log X2

b2
+ · · · + aN N log X N

bN

)
, (1)

where X1, . . . , X N are concentrations of chemical substances (mol/L), ai j rate con-
stants (s−1), and b j equilibrium values in concentration of chemical substances, each
of which makes the j-th logarithmic term be 0 (mol/L). With a specific set of ai j , the
concentrations of this system exhibit chemical oscillations in time.

We demonstrate that Eq. (1) is solvable. If the conditions

Xi �= 0 (i = 1, . . . , N ) (2)
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hold, Eq. (1) can be transformed to

⎧
⎪⎪⎨

⎪⎪⎩

d log(X1/b1)
dt = 1

X1/b1

d(X1/b1)
dt = a11 log X1

b1
+ a12 log X2

b2
+ · · · + a1N log X N

bN 1
...

d log(X N /bN )
dt = 1

X N /bN

d(X N /bN )
dt = aN1 log X1

b1
+ aN2 log X2

b2
+ · · · + aN N log X N

bN

(3)

Using substitution

Yi = log
Xi

bi
(4)

Equation (3) can be expressed as

⎧
⎪⎨

⎪⎩

dY1
dt = a11Y1 + a12Y2 + · · · + a1N YN

...
dYN
dt = aN1Y1 + aN2Y2 + · · · + aN N YN

. (5)

This is apparently a set of first-order ordinary linear differential equations. The solution
of Eq. (5) is [15] therefore,

�Y = exp(t A) �Y0, (6)

where �Y =
⎛

⎝

Y1 (t)
.
.
.

YN (t)

⎞

⎠ , �Y0 =
⎛

⎝

Y1 (0)

.

.

.

YN (0)

⎞

⎠, and A =
⎛

⎝

a11 · · · a1N
.
.
.

. . .
.
.
.

aN1 · · · aN N

⎞

⎠. By substituting

Eq. (4) for Eq. (6), we obtain

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

log X1(t)
b1

...

log Xi (t)
bi

...

log X N (t)
bN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= exp (t A)

⎛

⎜
⎜
⎝

log X1(0)
b1

...

log X N (0)
bN

⎞

⎟
⎟
⎠. (7)

Each i-th equation in Eq. (7) can be apparently transformed, by exponentiating both
sides, to yield solution Xi (t) on the left-hand side expressed explicitly in terms of
elementary functions of time t on the right-hand side; therefore Eq. (1) is solvable
with Eq. (7) as its general solution.

We will use four specific models derived from or related to Eq. (1), more specifically,
the following solvable model (SV) with two variables,

⎧
⎨

⎩

d X1
dt = X1

(
a11 log X1

b1
+ a12 log X2

b2

)

d X2
dt = X2

(
a21 log X1

b1
+ a22 log X2

b2

) . (8)
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The first model is derived from Eq. (8) by substituting a11 = a22 = 0, a12 = −a21 =
0.01, b1 = b2 = 1 (SV, 0.01),

{ d X1
dt = 0.01X1 log X2

d X2
dt = −0.01X2 log X1

. (9)

The second replaces the off-diagonal A values of Eq. (9) with a12 = −a21 = 0.001
(SV, 0.001),

{ d X1
dt = 0.001X1 log X2

d X2
dt = −0.001X2 log X1

. (10)

The third is the Lotka–Volterra (LV) two-variable predator–prey model used for com-
parison with Eq. (9) (LV, 0.01),

{ d X1
dt = 0.01X1 (−1 + X2)

d X2
dt = 0.01X2 (1 − X1)

. (11)

The fourth is another LV model with a smaller coefficient of 0.001 (LV, 0.001),

{ d X1
dt = 0.001X1 (−1 + X2)

d X2
dt = 0.001X2 (1 − X1)

. (12)

All these models describe oscillatory behaviour of chemical rates for X1 and X2.
Whereas the LV models Eqs. (11) and (12) are not solvable in a manner that solutions

should be explicitly expressed as elementary functions of time [5], the SV models Eqs.
(9) and (10) are solvable with solutions Eq. (7). This can be demonstrated as follows.
Using Eq. (7), the general solution of Eq. (9) is

⎛

⎝
log X1 (t)

log X2 (t)

⎞

⎠ = exp

[(
0 0.01t

−0.01t 0

)]
⎛

⎝
log X1 (0)

log X2 (0)

⎞

⎠

=
(

cos 0.01t sin 0.01t
− sin 0.01t cos 0.01t

)
⎛

⎝
log X1 (0)

log X2 (0)

⎞

⎠

=
(

log X1 (0)cos 0.01t + log X2 (0)sin 0.01t

log X1 (0)− sin 0.01t + log X2 (0)cos 0.01t

)

. (13)

Therefore, by exponentiating both sides, we obtain

{
X1 (t) = X1 (0)cos 0.01t · X2 (0)sin 0.01t

X2 (t) = X1 (0)− sin 0.01t · X2 (0)cos 0.01t , (14)
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Fig. 1 Simulations for the SV and LV models in the neighbourhood of the equilibrium point (1, 1). The
concentrations of X1 (red) and X2 (black) (mol/L) versus time (s). a The SV model with rate constant
0.01 s−1. b The LV model with 0.01 s−1. c Error between the SV and LV models. d–f Corresponding
versions with rate constant 0.001 s−1. NDSolve in Mathematica 8 (http://www.wolfram.com/mathematica/)
and analytical solutions were used for the LV and SV models, respectively (Color figure online)

which is the general solution of Eq. (9) explicitly expressed in terms of elementary
functions of t . Similarly, the general solution of Eq. (10) is

{
X1 (t) = X1 (0)cos 0.001t · X2 (0)sin 0.001t

X2 (t) = X1 (0)− sin 0.001t · X2 (0)cos 0.001t . (15)

3 Example: simulation with solvable model of ordinary differential equations

Following the classic Lotka analysis [1], we apply this solvable model to the simulation
of chemical oscillations between two chemical substances. This example uses two
fixed rate constants, 0.01 and 0.001 s−1, which represent slow but natural reactions.
Examples of chemical oscillations for the SV models [Eqs. (9), (10), (14), and (15)] are
shown (Fig. 1a, d). Figure 1a presents the solution for the SV model with rate constant
0.01 s−1 [Eq. (9) or (14)]. The initial values of X1 (red) and X2 (black) are both set to
1.001 mol/L, sufficiently close to the equilibrium point 1 mol/L. The solution exhibits
periodical chemical oscillations of X1 and X2 for 5,000 s, interacting and keeping a
phase. In contrast, Fig. 1b corresponds to a LV model used for comparison [Eq. (11)
or (15)] has the same rate constant 0.01 as the SV model; Fig. 1b is almost the same
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as Fig. 1a. The LV model is well-known to have an equilibrium point at (1, 1) in the
X1–X2 plane with circulating orbits. With an initial point of (1.001, 1.001), which is
close enough to (1, 1), an almost simple harmonic oscillation of X1 and X2 is expected
and observed (Fig. 1b). Figure 1a, b are almost the same and thus the SV model Eq. (9)
is expected to approximate the LV model Eq. (11). The errors between the SV (Fig. 1a)
and LV (Fig. 1b) models, shown in Fig. 1c, are less than 1/100 of the amplitudes of the
oscillations in Fig. 1a, b. This numerical example exhibits the proximity between the
SV and LV models given the same rate constant 0.01. Although the errors oscillate and
gradually increase, we found that the errors resulted from the difference in algorithms
between the SV and LV models. The SV model Eq. (9) was calculated using the
analytical solution Eq. (14) with no integration errors (Fig. 1a) whereas the LV model
Eq. (11) is a numerical calculation that accumulated integration errors (Fig. 1b). We
have made an additional confirmation by calculating the errors between the SV and LV
models with the same numerical integration algorithm. Errors remained below 1/1000
of the amplitudes of the oscillations in Fig. 1a, b over 270,000 s (data not shown).
No increases in time were observed in Fig. 1c with the errors linearly increasing to
roughly 1/10 of the amplitudes of the oscillations in Fig. 1a, b at 270,000 s. An example
with rate constant 0.001 (Fig. 1d–f) exhibits slower oscillations in time than that of
Fig. 1a–c because the rate constant of this example is 1/10 of the other. In these systems,
the frequencies of chemical oscillations thus depend on rate constant. Similar to the
previous example, Fig. 1d, e are near equal, and the errors (Fig. 1f) are less than 1/100
of the amplitudes of the oscillations in Fig. 1d, e. Figure 1d–f (rate constant 0.001)
are essentially the same as enlarged versions of the region 0–500 s of Fig. 1a–c (rate
constant 0.01). In summary, the SV model approximates the LV model within errors
of less than 1/100 of the amplitudes given initial conditions (1.001, 1.001), which was
near to the equilibrium point, not depending on two examples of the rate constants.

Figure 2 shows global regions of the X1–X2 planes for the SV and LV models. Figure
2a is the X1–X2 planes, or phase plane, for the SV model with rate constant 0.01 [Eq.
(9)], Fig. 2b for the corresponding LV model [Eq. (11)] for comparison, Fig. 2c for the
SV model with rate constant 0.001 [Eq. (10)], and Fig. 2d for the corresponding LV
model [Eq. (12)] for comparison. A phase plane defines an instant evolving direction
for the relevant system at a given point, i.e., a pair of concentrations of X1 and X2, in
the plane. At each point (X1, X2) in the plane, a vector calculated by the right-hand
side of, e.g., Eq. (9) for Fig. 2a is drawn to globally obtain orbits of the system by
connecting all the vectors. Note that the region around concentrations (X1, X2) in
Fig. 2a–d has been scaled up 5,000 times to that of Fig. 1a–f. As shown in the figure,
the SV and LV models have equilibrium points at (1, 1) with orbits circulating around
it. Global views and shapes of orbits in Fig. 2 are rather different between the SV
and LV models whereas oscillations in Fig. 1 are almost the same. The reason is that
in the neighbourhood of the equilibrium point (1, 1) the SV and LV models exhibit
small-amplitude oscillations and precision from the approximation of the SV model is
good (Fig. 1c, f). In a region distant from the equilibrium point, however, orbits of the
SV and LV models are affected by different nonlinearities inherent in the SV and LV
models (Fig. 2). In Fig. 2a, c, the SV model, angles of triangle-like orbits in the phase
planes are entirely sharp and dented whereas in Fig. 2b, d, the LV model, those are
entirely blunt and bulged. This tendency, as shown in the figures, becomes prominent
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Fig. 2 Global phase planes for the SV and LV models. Concentrations of X2 versus X1 (mol/L). a The
SV model with rate constant 0.01 s−1. b The LV model with 0.01 s−1. c The SV model with 0.001 s−1.
d The LV model with 0.001 s−1. The centres are drawn as points at (1, 1). Vectors indicate the direction of
evolution of the system; an orbit is formed by connecting vectors. StreamPlot in Mathematica 8 was used

in distant regions from the equilibrium point. Thus, we found that the orbits of the SV
model were relatively distorted than those of the LV model.

We can mathematically demonstrate how the SV model can approximate the LV
model in the neighbourhood of the equilibrium point (1, 1). A logarithmic function
can be expanded as a series,

log X = (X − 1) − 1

2
(X − 1)2 + 1

3
(X − 1)3 + · · · , (16)

around X = 1. Replacing the second and higher-order terms in the right-hand side of
Eq. (16) by ε, we can obtain

log X = X − 1 + ε. (17)

Supposing ε = 0 in Eq. (17) and then substituting Eq. (17) in the LV models, Eqs.
(11) and (12), result in the SV models Eqs. (9) and (10). The solvable model Eq. (1)
can be obtained by substituting Eq. (17) with ε = 0 for the Lotka–Volterra equations
with n variables. Therefore, the solvable model Eq. (1) can generally approximate
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Lotka–Volterra equations with constraint ε = 0, in other words, in the neighbourhood
of the equilibrium point. In contrast, from a global view, the orbits of the SV model
become distorted (Fig. 2a, c) compared with those of the LV models (Fig. 2b, d) due
to the second and higher terms in Eq. (16).

4 Conclusion

A general solution of a solvable model for chemical oscillations that approximates
the classic Lotka–Volterra equations with n variables was demonstrated. The general
solution of the solvable model with two variables was described using only explicit
expressions of elementary functions of time. We demonstrated an application of this
model by approximating the Lotka–Volterra equations in the neighborhood of orbit
centres.
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